
 Copyright CS-Lab s.c. 2021 rev. 1.0

simCNC
Motion Control Software

User Interface Editor Guide

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
2

 Content

1. GENERAL ... 4

1.1. RECOMMENDATIONS AND SYSTEM REQUIREMENTS ... 4

2. GENERAL CONDITIONS OF WORKING WITH THE GUI EDITOR .. 5

2.1. THE EDITOR WINDOW ... 5
2.2. SHORTCUT KEYS... 5
2.3. STAGES OF DESIGNING A NEW INTERFACE (WORKFLOW) ... 6

2.3.1. Concept sketch ... 6
2.3.2. Setting up the basic widget groups ... 7
2.3.3. Setting up and arranging the main widget groups ... 7
2.3.4. Assigning functions to widgets .. 8
2.3.5. Styling with style sheets (CSS) ... 8

3. WIDGETS ... 10

3.1. Push Button and Tool Button .. 11
3.2. Progress Bar ... 11
3.3. Line Edit ... 12
3.4. Dial .. 12
3.5. Checkbox .. 13
3.6. Label .. 13
3.7. Open File Button ... 13
3.8. Tool Button with LED .. 14
3.9. Tool Button with Progress Bar ... 14
3.10. Horizontal Slider i Vertical Slider ... 14
3.11. Digital IO indicator ... 15
3.12. Analog IO indicator ... 15
3.13. Current G-Codes ... 15
3.14. MDI Line ... 16
3.15. Python Console ... 16
3.16. GCode List .. 16
3.17. Path View ... 16
3.18. Offset Table .. 16
3.19. Group Box .. 16
3.20. Frame... 17
3.21. Tab Box .. 17
3.22. Scroll Area .. 17
3.23. Horizontal Layout ... 18
3.24. Vertical Layout ... 18
3.25. Grid Layout ... 19
3.26. Form Layout ... 19
3.27. Splitter ... 19

4. AUTO-LAYOUT SYSTEM ... 20

4.1. CONTAINER TYPES .. 20
4.1.1. Horizontal Layout ... 20
4.1.2. Vertical Layout ... 20
4.1.3. Grid Layout ... 21

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
3

4.1.4. Form Layout ... 22
4.1.5. Splitter ... 22

4.2. CONTAINERS BINDING – HIERARCHICAL STRUCTURE .. 23
4.3. MAIN WINDOW LAYOUT ... 24
4.4. WIDGETS CONTAINING CONTAINERS ... 26
4.5. SPACE DIVISION IN CONTAINERS ... 26

4.5.1. Elements scaling policy settings (size policy) .. 27
4.5.2. Ratio of elements size in a container (stretch) ... 27

5. CONNECTION OF THE GRAPHICAL INTERFACE WITH SIMCNC SOFTWARE .. 29

5.1. WIDGET INPUT SIGNALS... 29
5.2. WIDGET OUTPUT SIGNALS .. 30

6. CONNECTING THE GRAPHIC INTERFACE WITH PYTHON SCRIPTS ... 32

6.1. ACTIVATING A SCRIPT WITH A SCREEN BUTTON .. 32
6.2. REFERENCING TO INTERFACE ELEMENTS WITH PYTHON SCRIPT ... 33

6.2.1. Widget class methods ... 33
6.2.2. Widget styling change .. 34

APPENDIX – STEP BY STEP INTERFACE PROJECT .. 35

CONCEPT AND SKETCH .. 35
CREATING A NEW INTERFACE PROJECT AND EDITING START ... 35
BASIC WIDGET GROUPS ... 36

"Start", "Pause", "Stop" and "Rewind" group of buttons ... 36
"Open", "Close" and "Edit" group of buttons ... 37
File name and processing time group.. 37
Axis position indicator group .. 38
„Machine coords” and „Ignore Soft Limit” check box group ... 40
„Ref All”, „Probe”, „Park” and „Go To XY” group of buttons .. 40
Widget with „Tool Info” and „Offsets” tabs ... 41
„JOG” group ... 46
„Feedrate” group ... 50
„Spindle & Cooling” group .. 52

MAIN GROUPS AND LAYOUT ... 54
The left column .. 54
The central column ... 55
The right column .. 56
The main container layout .. 57

ASSIGNING FUNCTIONS/ACTIONS ... 59
Python macros for widgets with „Run script” action .. 62

ADDITIONS AND MINOR CORRECTIONS .. 63
STYLIZATION .. 64

Final cosmetic using css style sheets ... 67
THE FINAL RESULT AND SUMMARY ... 72

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
4

1. General

simCNC software is equipped with an advanced graphical
user interface editor, allowing you to create your own,
original operator interfaces that are precisely tailored to
customer requirements.
In conjunction with the Python scripting language and
styling using the popular CSS, the editor allows you to
create functional and visually attractive interfaces. The
software code has been optimized in terms of
performance to ensure responsiveness and comfort of
use. SimCNC has a system of auto-layout and scaling
graphic elements, which makes the designed interface
more dynamic and able to adapt over a wide range to
different sizes and resolutions of displays.
Since the simCNC software is multi-platform, the screen
designs can be used without modification on Windows,
macOS, and Linux.

1.1. Recommendations and system requirements

The simCNC software and the integrated graphic editor do not have high hardware requirements. The software will even run on
a RaspberryPI4 with 4GB of RAM. However, for comfortable work, especially if we create an interface "from scratch," it is good to
be equipped with a good monitor with a higher resolution, e.g., 27'' 2560x1440.
It is very convenient to have two monitors and a computer with more memory to be able to simultaneously use tools such as
Affinity Designer or Photoshop to prepare graphic elements or Visual Studio Code - to edit style sheets (CSS) and Python scripts.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
5

2. General conditions of working with the GUI editor

2.1. The editor window

Open the editor window from the menu: „Configuration  Open GUI editor”.

The window is divided into three main vertical panels. In the left panel, there are the following elements (from the top):

• Window always on top – checking it makes the editor window is always on top
• Set editor password – password protection for screen editing
• Main Window Layout – choosing a layout of the main window container (see the description of the auto-layout system

later in the manual)
• Widget list – to place a widget in a project, click your mouse and drag it to the designed simCNC screen
• Save – save changes
• Save As – save the project under a different name

The middle panel shows a tree of all elements of the designed interface, while the right panel displays a list of properties of the
selected widget or container.
The properties are described in the widgets section of the manual.

2.2. Shortcut keys

SHORTCUT DESCRIPTION
CTRL-C Copy selected elements to a clipboard
CTRL-V Paste the elements from the clipboard into a selected container
CTRL-Z Undo the last operation (undo)
CTRL-Y Redo the undone operation (redo)
CTRL-S Save project

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
6

2.3. Stages of designing a new interface (workflow)

This chapter provides an overview of designing a new interface workflow. Do not worry if some of the terms used here are unclear.
You can find a detailed description of the individual tools in the following chapters. Here we will focus on general rules.

2.3.1. Concept sketch

To take full advantage of the auto-layout system's capabilities and to not get lost in the growing number of elements, it is good to
start with preparing a draft - a general concept of the layout of our interface elements.

The picture above shows an exemplary conceptual sketch of a simCNC default screen (default).

Top part:

• Toolbar - a button bar
• MDI - area for quick entry of machine commands
• "logo" - company logo
• Axes DRO's - indication of a current position of machine axes
• Display and misc controls - controls related to displaying coordinates and others

The lower part is divided into three sections:

• Left section
o Tool Info - information about a current tool and offset
o Gcode text display - displaying content of a loaded Gcode file
o System messages - system messages console

• Central section
o TabPages Control - Tab panel

− 3D preview of Gcode file
− Work offsets
− Diagnostics
− 3D view of a Gcode file in four projections

o Operation control button bar

Concept
and draft

Basic Widget
groups

Main groups
and layout

Assignment
of function / action

Stylization
(CSS)

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
7

• Law section
o JOG Controls - control panel for manual axis control
o FRO Controls - feed rate control panel
o SRO Controls - spindle speed control panel

2.3.2. Setting up the basic widget groups

At this stage, we can initially start to create the basic interface widget groups. In the pictures above we can see main simCNC
window with a group of buttons and MDI on the left and the editor window on the right.
It is not worth dealing with all the details, such as icons for buttons, styling, etc. at the beginning. There will be time for that later.
It is a good idea to place individual controls in groups and to pre-define the layout (arrangement) rules for them. The auto-layout
system will be described in detail in a separate chapter.
It is important to give your widgets names that will allow you to easily find yourself in your project.

2.3.3. Setting up and arranging the main widget groups

The simCNC interface design has a hierarchical structure. You can combine the basic groups into larger ones and finally define a
layout of the main software window. You can orientate in the hierarchy of project elements by looking at the middle panel of the
editor window - the object tree. In the example below, you can see that the main MainLayout container contains three elements:
frTopButtons, frAxesAndOptions, and splCentral. The splCentral in turn contains: splToolGCodePython, loutCentral and
scrollRightPanel.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
8

The default simCNC screen has three main groups, arranged vertically:

• frTopButtons - a frame with buttons, MDI, and logo
• frAxesAndOptions - frame with axis positions and options
• splCentral - group with left, center, and right panels

It's good to think over a hierarchy and interface groups during the drafting stage. This makes it easier to modify later and define
scaling rules.

2.3.4. Assigning functions to widgets

At this stage, we assign input and output functions to the widgets. For example, for
the axis position display widget, we define an input function "Axis ... display position"
and an output function "Set axis ... prog position". The input action updates the
displayed value, and the output action triggers the position setting action when an
operator edits the widget content. All input and output actions are described in a
separate chapter. You can also set Run Script as an output action for buttons and
create a Python macro that will run when an operator clicks the button. This allows
you to perform more complex tasks or actions that are not on the standard list.

2.3.5. Styling with style sheets (CSS)

The simCNC interface system has built-in support for CSS stylesheets. Styling is optional but recommended when you want to
create a dynamic and visually attractive interface. Commands can be entered directly in the screen editor in the css field, or
(recommended) create a separate file with the .css extension and put it in the screen directory. It is very convenient to be able to
define groups of widgets for styling. To do this, in the edit mode, we enter a group name in the group field of widget properties,
and we can later modify the visual attributes in the css file for all widgets that have a specific group name set. For example, in the
default screen, all buttons on the top bar have ctrlButtons group name.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
9

Here is a part of the style.css file that defines the appearance of the whole group:

Shortened notation of the widget "id" when entering "css" in the editor window.

If we enter the content of CSS in the editor window, we can use the option of shortening the widget identifier. To do this, enter
#id, as shown below.

A normal, complete notation would be:
[id=”btnEdit”] {
 …
}
The standard notation is also allowed.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
10

3. Widgets

Widget selection in edit mode displays a list of its properties in the right panel of the editor window.

In the above example of the Tool Button widget, you can see that the properties are grouped. WidgetBase is a group of properties
common to all widgets. ToolButton is a properties group for a specific Tool Button widget.

The table below describes the properties common to all widgets.

PROPERTY DESCRIPTION
Id Widget identifier. You should assign intuitive identifiers, especially if you later use

css styling functions or plan to refer to widgets from Python macros.
For example, btnStartGCode is a much better name than buton_123.

Group Widget group identifier. Very useful for styling (css). By giving the same group
name to multiple widgets, you can significantly reduce the amount of code in the
css stylesheet.

Css Quick commands typing field for styling a widget. It’s useful, especially when we
are experimenting with different properties. Ultimately, it is better to create a .css
file (or files) in a directory of the designed screen.

block key events Selecting this option means that the widget does not forward information about
buttons pressed on a keyboard. It’s useful, for example, in edit fields like MDI.
Thanks to this, changing a cursor position in the edit field does not cause a machine
movement when JOG control is activated from a keyboard.

Horizontal size policy Widget horizontal scaling policy. Detailed description in the chapter on auto-layout.
Vertical size policy Widget vertical scaling policy. Detailed description in the chapter on auto-layout.
Minimum width Minimum allowed width of a widget.
Minimum height Minimum allowed height of a widget.
Left margin Left margin of a widget.
Right margin Right margin of a widget.
Top margin Top margin of a widget.
Bottom margin Bottom margin of a widget.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
11

3.1. Push Button and Tool Button

Both these button widgets have almost identical functionality. They slightly differ visually.
The ToolButton has an additional option of selecting a position of a displayed icon. Both
widgets are functionally identical.

Properties:

PROPERTY DESCRIPTION
Text Text displayed on a button
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string

For example, "% .3f" displays a floating-point value to three decimal places.
Font Setting a widget font
Icon Selection of a picture for a button icon
Icon width Width of an icon
Icon height Height of an icon
Tool buton style Style of the ToolButton.

• Icon only
• Text only
• Text beside icon
• Text under icon
• Follow style (as defined in a style sheet)

Input: text Widget input - selection of a parameter that will update a text displayed on the button
Output: clicked Widget output - selection of an action that will be activated after clicking on the button
Output: pressed Widget output - selection of an action that will be activated after pressing a left mouse

button on the button
Output: released Widget output - selection of an action that will be activated when releasing a left mouse

button on the button

3.2. Progress Bar
The Progress bar can be used to visualize many different values, such as FRO, SRO, etc.

Properties:

PROPERTY DESCRIPTION
Text Text displayed on a widget
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string

For example, "% .3f" displays a floating-point value to three decimal places.
Font Setting a widget font
Horizontal alignment The horizontal position of the widget content (text)

• Left – left align
• Right – right align
• Center – centering
• Justify – justification

Vertical alignment The vertical position of the widget content (text)
• Top – top align
• Bottom – bottom align
• Center – centering
• Baseline – align to baseline

Read only Selecting this option means that the widget content is read-only and cannot be edited.
Input: value Widget input - selection of a parameter that will update the bar progress value

https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Printf_format_string

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
12

3.3. Line Edit
Text display and editing field.

Properties:

PROPERTY DESCRIPTION
Text Displayed text - widget content
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string
For example, "% .3f" displays a floating-point value to three decimal places.

Font Setting a widget font
Horizontal alignment The horizontal position of the widget content (text)

• Left – left align
• Right – right align
• Center – centering
• Justify – justification

Vertical alignment The vertical position of the widget content (text)
• Top – top align
• Bottom – bottom align
• Center – centering
• Baseline – align to baseline

Read only Selecting this option means that the widget content is read-only and cannot be edited.
Input: text Widget input - selection of a parameter that will update the text displayed in the edit

field
Output:
returnPressed

Widget output - selection of an action that will be activated when the return key is
pressed, when editing the widget content is completed

3.4. Dial
Adjustment Dial – setting numerical values within a specified range.

Properties:
PROPERTY DESCRIPTION
Wrapping Setting the rotation range to full 360° with no dead zone.
Notches visible Notches display enable
Notch target Notch target
Value The current value
Minimum Minimum value
Maximum Maximum value
Single step Regular adjustment pitch (pressing the up or down arrow)
Page step Rapid adjustment stroke (pressing page up or page down)
Inverted appearance Inverted dial display. Swap the minimum and the maximum.
Inverted controls Reversing the adjustment direction
Input: value Widget input - selection of a parameter that will update a position of the dial
Output:
valueChanged

Widget output - selection of an action that will be activated when a user changes
position of the dial

https://en.wikipedia.org/wiki/Printf_format_string

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
13

3.5. Checkbox
Selection button. Used to enable/disable options, e.g., enable/ disable software limits.

Properties:

PROPERTY DESCRIPTION
Text Displayed text
Checkbox state Sets a selection state
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string
For example, "% .3f" displays a floating-point value to three decimal places.

Font Setting a widget font
Input: checkbox state Widget input - selection of a parameter that will update the widget state
Input: text Widget input - selection of a parameter that will update the widget text
Output: stateChanged Widget output - selection of an action that will be activated when the widget state

changes

3.6. Label
The label widget is used to display text or graphics. It does not activate any actions.

Properties:

PROPERTY DESCRIPTION
Text Displayed text
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string

For example, "% .3f" displays a floating-point value to three decimal places.
Font Setting a widget font
Word wrap Words braking enable
Horizontal alignment The horizontal position of the widget content (text)

• Left – left align
• Right – right align
• Center – centering
• Justify – justification

Vertical alignment The vertical position of the widget content (text)
• Top – top align
• Bottom – bottom align
• Center – centering
• Baseline – align to baseline

Pixmap Select a bitmap to display
Scale mode Select a bitmap scaling type

• Normal - without keeping the aspect ratio
• KeepAspect – keeps aspect ratio

Input: text Widget input - selection of a parameter that will update the widget text

3.7. Open File Button

A special button for loading GCode files. Similar to the Tool Button but additionally displays a list of recently
opened files. It does not require setting input and output actions to run. The properties are the same as for
the Tool Button.

https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Printf_format_string

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
14

3.8. Tool Button with LED
It’s a Tool Button variant. It also provides a state indicator light display to define an action that will
update the LED state.

It supports all the Tool Button properties plus the listed below:

PROPERTIES DESCRIPTION
LED visible Enables/disables the indicator LED on a button
LED state LED state – enable / disable
LED interval If the value is higher than zero, it activates LED flashing. The value is milliseconds, and it

determines half of the period. For example 500 means T = 500x2 = 1s ; f = 1/T = 1Hz
Color The LED indicator color selection
Input: LED state Widget input – selection of a parameter that will update a state of the LED indicator

displayed on the button.
Input: LED interval Widget input – selection of a parameter that will update flashing interval of the LED

indicator.

3.9. Tool Button with Progress Bar
It’s another Tool Button variant. It also provides a progress bar display to define a separate action
that will update a value.

It supports all the Tool Button properties plus the listed below:

PROPERTIES DESCRIPTION
Value The current value
Minimum The minimal value
Maximum The maximal value
Color The bar color selection
Input: value Widget input – selection of a parameter that will update the progress bar value.

3.10. Horizontal Slider and Vertical Slider
There are two variants – horizontal and vertical slider for setting a value within a specific range.

Properties:
PROPERTIES DESCRIPTION
Value The current value
Minimum The minimal value
Maximum The maximal value
Single step Regular adjustment pitch (pressing the up or down arrow)
Page step Rapid adjustment stroke (pressing page up or page down)
Inverted appearance Inverted slider display. Swap the minimum and the maximum.
Inverted controls Reversing the adjustment direction
Input: value Widget input – selection of a parameter that will update a slider position
Output: valueChanged Widget output – selection of an action that will be activated when a user changes the

slider position

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
15

3.11. Digital IO indicator
An indicator for displaying logic values (0, 1) state. It is used, for example, to signalize hardware
inputs/outputs state. It may also activate an action after clicking.

Properties:
PROPERTIES DESCRIPTION
Text Displayed text
State Sets the indicator state
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string
For example, "% .3f" displays a floating-point value to three decimal places.

Clickable Enable indicator state control by mouse clicking
Color Indicator color selection
Input: text Widget input – selection of a parameter that will update the widget text
Input: state Widget input – selection of a parameter that will update the widget state
Output: stateChanged Widget output – selection of an action that will be activated when a user changes the

widget state

3.12. Analog IO indicator
An indicator for displaying number values. It’s used, for example, for presenting hardware values of
analog inputs and outputs. It can set values as well.

Properties:
PROPERTIES DESCRIPTION
Text Displayed text
Display format A text string that defines a format of displayed values. Compliant with the "printf"

standard: https://en.wikipedia.org/wiki/Printf_format_string
For example, "% .3f" displays a floating-point value to three decimal places.

Value The current value
Clickable Enable indicator state control by mouse clicking
Color Indicator color selection
Maximum Maximal value
Input: text Widget input – selection of a parameter that will update the widget text
Input: value Widget input – selection of a parameter that will update the indicator text
Output: valueChanged Widget output – selection of an action that will be activated when a user changes the

indicator value

3.13. Current G-Codes
A list of current modal commands state (machine state).

Properties:

PROPERTIES DESCRIPTION
Font Widget font settings
Horizontal alignment Horizontal widget content (text) position.

• Left – left align
• Right – right align
• Center – centering
• Justify – justification

Vertical alignment Vertical widget content (text) position.
• Top – top align
• Bottom – bottom align
• Center – centering
• Baseline – base line align

https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Printf_format_string

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
16

3.14. MDI Line
A field for quick machine commands entering (MDI).

3.15. Python Console
A text panel with Python scripts messages and other system information and warning messages.

3.16. GCode List
Displays the current content of a loaded gcode file in text form and currently executed line during machining. It provides by
double-click selection of a line at which the machining starts.

3.17. Path View
It displays the content of a currently loaded gcode file and a current machine axis position in
graphic form (3D).

Properties:
PROPERTY DESCRIPTION
Perspective view Enables perspective view
Soft limits visible Enables soft limits visualization
Default view Default view type:

• Top View
• Bottom View
• Right View
• Left View
• Front View
• Rear View
• Isometric view

Default z height
mapping

Default height (Z) mapping type with colors:
• None – without coloring
• Color – color mapping
• Grayscale – greyscale mapping

3.18. Offset Table
It’s a widget for displaying work offsets table and for editing them.

3.19. Group Box
It’s one of the basic containers for widgets grouping.

Properties:
PROPERTY DESCRIPTION
Layout type Type of auto-layout in a group
Title Displayed name of a group

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
17

3.20. Frame
The frame is also one of the basic containers for widgets grouping. It looks slightly
different from the Group Box (it doesn’t display the title).

Properties:

PROPERTY DESCRIPTION
Layout type Type of auto-layout in a frame
Shadow Frame shadow type:

• Plain – standard
• Raised
• Sunken

Shape Frame shape type:
• No frame
• Box – rectangular
• Panel – raised or sunken panel
• Styled panel – a panel according to actual gui style
• Horizontal line
• Vertical line
• Windows styled panel – style as Windows 2000

Line width Width of the line
Mid line width Width of the midline

3.21. Tab Box
A container with tabs for widgets grouping.

Properties:
PROPERTY DESCRIPTION
Tabs quantity Number of tabs
Current tab The current (default) tab

3.22. Scroll Area
A container with scroll bars. Helpful when we have a limited area, and we want to
include more elements in our interface. It's also a good idea to use it if you want the
interface design to display correctly on screens with lower resolutions

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
18

Properties:
PROPERTY DESCRIPTION
Spacing Space between widgets
Stretch Scaling rate of each element in the container
Layout type Auto-layout type:

• Free Layout – no auto-layout
• Horizontal Layout
• Vertical Layout
• Grid Layout
• Form Layout – vertical pairs layout

Horizontal scroll bar policy Horizontal content scrolling bar display policy:
• As Needed
• Always Off
• Always On

Vertical scroll bar policy Vertical content scrolling bar display policy:
• As Needed
• Always Off
• Always On

Shadow Frame shadow type:
• Plain – standard
• Raised
• Sunken

Shape Frame shape type:
• No frame
• Box – rectangular
• Panel – raised or sunken panel
• Styled panel – a panel according to actual gui style
• Horizontal line
• Vertical line
• Windows styled panel – style as Windows 2000

Line width Width of the line
Mid line width Width of the midline

3.23. Horizontal Layout
Horizontal auto-layout system container. It groups widgets and defines their layout and scaling way. The auto-layout system
is described in a separate chapter.

Properties:

PROPERTY DESCRIPTION
Spacing Space between widgets
Stretch Scaling rate of each element in the container

3.24. Vertical Layout
Vertical auto-layout system container. It groups widgets and defines their layout and scaling way. The auto-layout system is
described in a separate chapter.

Properties:

PROPERTY DESCRIPTION
Spacing Space between widgets
Stretch Scaling rate of each element in the container

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
19

3.25. Grid Layout
Grid auto-layout system container. It groups widgets and defines their layout and scaling way. The auto-layout system is
described in a separate chapter.

Properties:

PROPERTY DESCRIPTION
Horizontal spacing Horizontal space between widgets
Vertical spacing Vertical space between widgets
Column stretch Columns scaling rate in the container
Row stretch Rows scaling rate in the container

3.26. Form Layout
Form auto-layout system container. It groups widgets and defines their layout and scaling way. The auto-layout system is
described in a separate chapter.

Properties

PROPERTY DESCRIPTION
Horizontal spacing Horizontal space between widgets
Vertical spacing Vertical space between widgets

3.27. Splitter
Dynamic split and elements size auto-layout system container. It groups widgets and defines their layout and scaling way. The
auto-layout system is described in a separate chapter.

Properties:

PROPERTY DESCRIPTION
Orientation Orientation of elements

• Horizontal
• Vertical

Shadow Frame shadow type
• Plain – standard
• Raised
• Sunken

Shape Frame shape type
• No frame
• Box – rectangular
• Panel – raised or sunken panel

• Styled panel – a panel according to current style
• Horizontal line
• Vertical line

• Windows styled panel – style as Windows 2000
Line width Width of the line
Mid line width Width of the midline

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
20

4. Auto-Layout System
The auto-layout system is a key element of the simCNC user interface. Thanks to it, the created interface is convenient, dynamic,
and can adapt to different display sizes to a large extent. It is worth spending some time learning more about the system rules and
practicing the operation of this system's elements. After that, you will easily design attractive and functional interfaces quickly and
conveniently.

4.1. Container types
The basic element of the auto-layout system is the so-called container, in which we place widgets and other containers. The type
of container determines a general principle of an arrangement of the elements in it.

4.1.1. Horizontal Layout
Container with horizontal layout. As you can easily guess – it is used to group widgets, arranging them horizontally.

You can see three Digital IO Indicator widgets arranged horizontally in a container in the image above. It is worth paying
attention to two properties of the container, which control the distance between widgets (spacing) and division of space for
individual elements (stretch).

Above is the same container, but the distance (spacing) was changed from "1" to "5" and the division of space (stretch) was set to
"3,1,1". The notation "3,1,1" means that the recommended size of the first widget will be 3x larger than the others. Please pay
attention to the word recommended. The elements scaling is also affected by the size policy parameters described in a separate
subsection. In the example above, the size policy is set to Preferred for all three elements in the container.

4.1.2. Vertical Layout
Container with the vertical layout. The principle of operation of this container is identical to the Horizontal Layout, and the only
difference is the vertical arrangement of the elements in it.

Above, you can see two Vertical Layout containers, with the same widgets and two variants of settings, as in the Horizontal Layout
container description.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
21

4.1.3. Grid Layout
Container with grid arrangement. The elements here are arranged both horizontally and vertically in the form of rows and columns.

You can see six Digital IO Indicator widgets placed in the Grid Layout container in the screenshot above. The control over spacing
and stretch coefficients principle is identical to the previously described Horizontal and Vertical Layout, except that we have here
the possibility to define properties for columns and rows separately.

Another example shows the change of column spacing to "1" and column stretch to "3,1,1". As you might expect, the effect is
reducing the distance between the elements horizontally, and the first column is three times wider than the others.

We used here identical settings for row spacing (1) and row stretch (3,1,1). Now the distances in the rows and columns are the
same, and the first row is three times larger than the others.

A common mistake made by less experienced users is to abuse the Grid Layout container and place all the interface elements in
it. This approach causes issues when the number of elements increases. When we have a lot of columns and rows, it becomes
increasingly difficult to control the size and arrangement of elements. A much better approach is to build smaller interface blocks
and combine them into larger ones. Remember that another container can also be an element of the container.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
22

4.1.4. Form Layout
Container with form layout. It is a kind of a variety of Grid Layout, specialized for creating forms such as below.

Form Layout arranges pairs of elements in rows, so it is basically a grid made of two columns and a free number of rows. It is great
for applications like the example above, where we have repeating rows like "descriptionwidget". You can, of course, use Grid
Layout for it, but Form Layout has form-optimized rules for scaling elements and often gives a better visual effect with less effort.

4.1.5. Splitter
It is a container like Horizontal and Vertical Layout, but it has an important difference: While, for example, in the Horizontal Layout,
we define a permanent ratio of the size of elements, the Splitter allows a user to modify the size of the elements later. The splitter
allows you to select the type of layout (vertical/horizontal) by setting the "Orientation" property.

Above, we see three widgets, "Digital IO Indicator," arranged horizontally in the Splitter.

Above is the same container, but after closing the editor and resizing its elements, clicking on the space between widgets and
moving the mouse cursor.

With this container, you can give the operator more control over the size of the interface groups, which often translates into a
better experience and more convenient work.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
23

4.2. Containers binding – hierarchical structure

Connecting containers is the basic way to build a complete interface and gives more control over the size of elements in the auto-
layout system.

For example, a part of an interface like the following:

When designing this type of block, it is hard to decide at first what kind of layout we should use. The answer is using several
containers, as shown in the picture below:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
24

In the form of a tree, it looks like this:

The main container is the GroupBox widget with Vertical Layout. There are two elements marked in green: the LineEdit widget
(text "FRO: 100%") and another container with Horizontal Layout. In it, in turn, there are three elements marked in blue: a
container with 25%-100% buttons (Vertical Layout), a speed setting slider (Slider), and a container with a form for displaying and
editing parameters (Form Layout).

At first, it may seem a bit complicated, but such a hierarchical structure has many advantages. Among others, it enforces order in
the project and allows you to easily use entire blocks in different places or even other projects. For example, if you want to use a
group of buttons from the example above in another project, select only the appropriate container and click CTRL-C. Close the
editor, change the screen, enter the edit mode again and click CTRL-V.
With a bit of practice, thinking about the interface in the blocks and groups becomes natural, and the design becomes comfortable
and fast.

4.3. Main Window Layout
The main simCNC window is also a container for which you can select the type of elements arrangement. Referring to the
hierarchical structure discussed in the previous subsection – it is the main container at the very top of the hierarchy.

The type of layout for the main window is selected in the editor window:

Feedrate GroupBox (Vertical Layout)

FRO Text (LineEdit) HorizontalLayout

VerticalLayout

ToolButton "150%"

ToolButton "125%"

ToolButton "100%"

ToolButton "50%"

ToolButton "25%"

Slider FormLayout

Label
"FeedRate"

LineEdit
"FeedRate"

Label "Ov.
Feedrate"

LineEdit "Ov.
Feedrate"

Label "Curr.
vel"

LineEdit
"Curr. vel."

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
25

While Horizontal, Vertical, Grid and Form Layout are already known, "Free Layout" has not been mentioned yet. Free Layout
disables auto-layout. Disabling auto-layout is convenient at the early stage of designing the screen elements or making significant
modifications to the design. The choice of the type of layout for the window is made when we have designed the main groups of
elements.

In the screenshot above, you can see the design of the default simCNC interface with the auto-placement of the main container
disabled.
In this project, we have three main interface groups:

• A group with button bar subgroups, MDI, and logo
• A group with subgroups of axis position and option widgets
• Splitter with subgroups with the rest of the elements

The concept of the project assumes a vertical layout of the main groups. Below you can see the screenshot after setting the
"Vertical Layout" for the main container. From now on, resizing the window will automatically adjust all content to the new size.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
26

4.4. Widgets containing containers

The following widgets in the interface editor are used to group elements and contain containers with the ability to set the layout
type:

• GroupBox
• Frame
• TabBox
• ScrollArea

Properties of these widgets and their appearance are shown in the widgets chapter.

As with the main container, you can disable auto-layout for the widgets by selecting "Free Layout".

This can sometimes be useful when predesigning widget content.

The following is an example of a GroupBox widget with three Dial widgets, before and after enabling Horizontal Layout:

4.5. Space division in containers

There is often a need to define how the auto-layout system should allocate the available space in a container to individual
elements. Take, for example, such a group:

Here we see two buttons and a slider in a horizontal layout. At first glance, everything looks correct, but operating the slider would
be more precise if it were wider. The simCNC screen editor allows you to accurately control this aspect through the settings of the
space division in the container (stretch) and the policy of scaling elements (size policy).

Above, we can see the same group, but we now have the horizontal size policy set to "Expanding"– i.e., maximum use of available
space for the slider.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
27

4.5.1. Elements scaling policy settings (size policy)

For each element, you can set the following vertical size policy and horizontal size policy:

TYPE DESCRIPTION
Fixed The size of an element is set rigidly using the minimum width and minimum height properties.

Setting these properties to zero uses the default minimum size.
Minimum The default size of a widget is its minimum size. The widget can be enlarged, but it is not forced.
Maximum The default size of a widget is its maximum size. The widget size can be reduced but not below

dimensions that make it impossible to use.
Preferred The widget size can be enlarged or reduced but not below dimensions, making it impossible to use.
Expanding Forcing an element to take up as much available space as possible. The widget size can also be

reduced but not below dimensions that make it impossible to use.
Minimum Expanding Forcing an element to take up as much available space as possible.
Ignored If possible, an element will have need space assigned. If a container is too small, the element may

be skipped and will not be displayed at all.

In practice, the most used settings are Fixed, Preferred, and Expanding.

Below, for example – the same group as before, but the vertical size policy for buttons has been changed from Fixed to Preferred.
As expected, the height of the buttons has been adapted to use the available space. Horizontally, on the other hand, the slider
takes up the most space because the buttons have the horizontal size policy parameter set to Preferred and the slider to
Expanding.

4.5.2. The ratio of elements size in a container (stretch)

This property of containers has already been mentioned when discussing the types of layouts, but as a reminder – the stretch
parameter can quickly and conveniently control how space should be assigned for elements in a container. So that this parameter
works properly, it is best to set the size policy for elements to Preferred (Fixed, e.g., always forces the default size of an element).
Below you can see a group of three buttons in the horizontal layout (Horizontal Layout). The size policy parameters of the buttons
are set to Preferred, and in the stretch field for the container, there is "1,1,1".

A value of "1,1,1" means that the recommended size of each of the three buttons should be the same. Notice what happens when
you change the container stretch parameter to "1,1,2":

As you can see, the size of the third button is now twice as large. It is worth mentioning that in the stretch parameter, the ratio of
values matters, not the absolute values - that is, if you set "10, 10, 20" the effect will be identical. Using larger values can be useful
to define the division more precisely. Entering "10,10,15" will make the third button 1.5x larger than the others.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
28

Another thing is that the given values are the recommended ones. Please look at what will happen if the stretch parameter is set
to "1,1,2", but the description of the second button will be changed to a much longer one.

As you can see, despite the recommended division, the auto-layout system has allocated more space for the second button to fit
the text displayed in it. The set division will be applied only when the size of the container is sufficient.

Another option, if we want to keep the desired division, is to set the horizontal size policy to Ignored for the second button.

As you can see, the change in the scaling policy for the second button caused that the division set by the stretch parameter was
kept, but the button text was cut.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
29

5. Connection of the graphical interface with simCNC software

Widgets in their properties can have inputs and outputs. With these properties, we connect the graphical interface simCNC
functions and values.

Widget inputs allow you to update its status or content when a value in simCNC changes. As an example, we can use a display of
a current axis position: we create a Label widget, and as "Input: text" select "Axis X display position” from the list. When the
position of the axis (in this case, the X-axis) changes, the widget text is updated.

Widget outputs allow the graphical interface to activate actions or modify parameters in simCNC. An example here is a machining
start button: we create the ToolButton widget, and as "Output: Clicked" in its properties, select "Start trajectory".

5.1. Widget input signals

NAME DESCRIPTION
Anti-dive delay Anti-dive delay value for automatic plasma torch height control (THC)
Anti-dive velocity Anti-dive speed value for automatic plasma torch height control (THC)
Axis (…) abs position The current absolute position of an axis (machine coordinates)
Axis (…) current work offset The current working offset of an axis.
Axis (…) display position Current axis position with the option to switch between machine and software

coordinates
Axis (…) prog position Current programming position of an axis
Axis (…) tool offset Offset tool in a given axis
Axis (…) tool wear offset Offset tool wear in a given axis
Axis (…) velocity Velocity in a given axis
Calculated path time Calculated estimated execution time of a gcode file
Current spindle speed Current spindle speed
Current torch voltage Current plasma torch arc voltage
Current velocity Current velocity
Feedrate Set feed rate
Feedrate override Set feed rate including regulator (FRO)
FRO Value of a feed rate regulator
GCode file path Path of a currently loaded gcode file
GCode line number Number of a gcode file executed line
IO pin value Hardware I/O pin value
JOG mode Current JOG mode
JOG speed Set JOG speed
JOG step Set step for JOG step mode
Machine param Value of a machine parameter with a set number
Override spindle speed Set spindle speed including regulator (SRO)
Remain path time Estimated time remaining until the gcode file is executed
Screen name Name of a currently loaded screen
Selected tool nr Number of a selected tool
Signal value I/O signal value
Spindle CCW percent Percentage of current spindle rotation (left rotation)
Spindle CW percent Percentage of current spindle rotation (right rotation)
Spindle speed Set spindle speed
Spindle tool nr Number of a tool loaded in a spindle
SRO Spindle rotational speed regulator value
THC init position Saved "Z" coordinate, at which the automatic torch height control function was

activated
THC max deviation positive Maximum range of motion in the positive direction for automatic plasma torch

height control
THC max deviation negative Maximum range of negative movement for automatic plasma torch height control

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
30

THC mode Selected mode of operation of automatic torch height control
THC position deviation Current initial value of automatic torch height control – distance from THC init

position
THC smart analog amplification Amplification value for smart-analog mode of automatic torch height control

function
THC velocity Velocity for automatic torch height control
THC voltage deadband Deadband voltage range for automatic torch height control.
Tool diameter Diameter of a currently selected tool
Tool diameter wear Tool wear offset (diameter)
Tool offset number Number of a selected tool offset
Torch on mode Plasma torch arc detection mode
Torch on voltage max Upper voltage limit for plasma torch arc detection function
Torch on voltage min Lower voltage limit for plasma torch arc detection function
Torch voltage division factor Divider for measuring plasma torch arc voltage
Torch voltage potentiometer max Arc voltage value for the maximum position of a cutting height adjustment

potentiometer
Torch voltage potentiometer min Arc voltage value for the minimum position of the cutting height adjustment

potentiometer
Torch voltage threshold Arc voltage threshold value for up/down motion for "analog" and "smart-analog"

modes of automatic torch height control
Work offset number Number of a currently selected working offset

5.2. Widget output signals

NAME DESCRIPTION
Close simCNC Close simCNC software
Edit G-Code Open the gcode edit window
Execute probing script Run a python macro for tool measuring
JOG (…)+ pressed Start JOG move in a direction positive for an axis
JOG (…)+ released Stop JOG move in a direction positive for an axis
JOG (…)- pressed Start JOG move in a direction negative for an axis
JOG (…)- released Stop JOG move in a direction negative for an axis
Open settings window Open the simCNC settings window
Path simulation Simulation of gcode file, speed analysis, acceleration, etc.
Ref (…) axis Starting the axis homing procedure
Ref all axes Starting the homing sequence of axes selected for automatic homing in simCNC

settings
Rewind trajectory Rewind to the beginning of a gcode file
Run script Runs an indicated python macro
Run spindle clockwise Switching on the right spindle rotation
Run spindle counter-clockwise Switching on the left spindle rotation
Set anti-dive delay Setting the anti-dive delay value of the automatic plasma torch height control

function
Set anti-dive velocity Anti-dive velocity setting of the automatic torch height function
Set axis (…) current work offset Setting a working offset value in a given axis
Set axis (…) prog position Modification of the working offset value in a given axis by providing a current value

of a program position
Set current tool diameter Setting a diameter value of a currently selected tool
Set current tool diameter wear Setting a wear value for the diameter of a currently selected tool
Set feedrate Setting the feed rate setpoint
Set flood on/off Turns the flood coolant on/off
Set FRO Sets a current value of a feed rate regulator
Set IO pin value Setting a pin state (output)
Set JOG mode Setting a JOG mode
Set JOG speed Setting JOG speed (0 – 100%)

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
31

Set JOG step Setting step for JOG step mode
Set machine param Setting a value of a machine parameter
Set mist on/off Turns the mist coolant on/off
Set pause on/off Stops/resumes execution of a gcode file
Set selected tool number Sets a number of a currently selected tool
Set spindle speed Sets the set spindle rotation
Set spindle tool number Sets a number of a tool loaded in a spindle
Set SRO Sets a current value of the spindle rotational speed regulator
Set THC max deviation negative Sets the maximum range of motion in the negative direction for the automatic torch

height control function
Set THC max deviation positive Sets the maximum range of motion in the positive direction for the automatic torch

height control function
Set THC off Disables automatic torch height control
Set THC on Enables automatic torch height control
Set THC smart-analog amplification Sets an amplification for the "smart -analog" mode of the automatic torch height

control function
Set THC velocity Sets velocity for automatic torch height control
Set THC voltage deadband Sets a allowed range of fluctuations of a torch arc voltage for which no height

correction is performed
Set tool number offset Sets the working offset number
Set torch on voltage max Sets the upper arc voltage limit for plasma torch arc detection function
Set torch on voltage min Sets the lower arc voltage limit for plasma torch arc detection function
Set torch voltage division factor Sets a value of a plasma torch arc voltage measurement divider
Set torch voltage potentiometer
max

Sets a arc voltage setpoint for the maximum potentiometer position

Set torch voltage potentiometer
min

Sets a arc voltage setpoint for the minimum potentiometer position

Set torch voltage threshold Setting a threshold value for the up/down motion of a torch ("analog" and "smart-
analog" mode of the automatic torch height control function)

Set work offset number Sets a working offset number
Show real trajectory Enables a view of an actual trajectory of movement, taking into account optimization

and constant cutting speed.
Start trajectory Start machining – start of a currently loaded gcode file
Stop trajectory Stop machining
Switch to EStop/Idle state Switching simCNC between stop and idle states
Tool table Displays a tool list window

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
32

6. Connecting the graphic interface with Python scripts

The simCNC GUI allows you to:

• execute user scripts after clicking a button
• refer to widgets from a script

o run widget actions
o read and modify widget properties (e.g., text)

6.1. Activating a script with a screen button

The previous chapter lists the possible output signals of widgets. However, there is often a
need to implement a custom function activated by an operator from the graphical interface.
Below is an example of how this can be implemented:

We create a button in the interface editor (ToolButton). We give it an identifier – e.g.
btnPythonTest. You can also set a label of the button, e.g., "Python Test".

Then, for the Output: clicked button, set Run script. A script selection window opens, and we
should close it because we will create a new file in a moment.

Open the script editor (icon next to the Choose script button).

Enter script code in the editor (as above). Our sample script displays a message in the console and an information window.

Save the file, preferably in a catalog with data of the designed screen. In our example, the screen is named "my_test_screen". So
we go to the subdirectory "screens/my_test_screen/scripts" relative to the simCNC installation location, and we give the file a
name – e.g., "test-ui".

Then we can close the Python editor window, click the Choose script button in the
widget properties, and select the "test-ui" file. Keep changes in the project by clicking
Save. Close the interface editor and done – we have created a button that runs our
Python macro. You can check how the button works by clicking on it. In the python console (if we have this widget in the project),
the text "Python test – UI" should appear and also a window with the message "Test Python – UI".

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
33

6.2. Referencing to interface elements with Python script

The simCNC graphic interface system allows you to refer to widgets from the level of Python scripts. When is it necessary? Imagine
that we have a machine tool with automatic tool change, and we want to have a status or error code from the tool changer
displayed on our screen. Tool change is most often carried out through the M6 machine macro. Therefore, the M6 macro code
must be able to update the widget text on a screen to display the desired information.

When creating a macro code in simCNC's built-in editor, a class named gui is automatically imported, and it has all the graphic
elements of a loaded screen in it. We refer to a specific element through the widget identifier (id property).

gui.<id>.<nazwa metody>(<argumenty>)

Using the widget example from the previous subsection, if you want to change the text on the button, we do it as follows:

gui.btnPythonTest.setText(“Some New Text”)

6.2.1. Widget class methods

The widget class provides a programmer with the following methods:

METHOD NAME DESCRIPTION
executeClickedOutput Runs an action defined by the left mouse button

Arguments: (none)
Return value: (none)

executePressedOutput Runs an action defined by pressing the left mouse button on a widget

Arguments: (none)
Return value: (none)

executeReleasedOutput Runs an action defined to release the left mouse button on a widget

Arguments: (none)
Return value: (none)

executeOutput Runs an action defined on a specified widget output.

Arguments:

• Widget output name
• Return value: (none)

getAttribute Get a value of a widget property.

Arguments:

• Property name
Return value:

• Property value
getAttributes Get a list of widget properties

Arguments: (none)
Return value:

• List of widget property names
getOutputs Get a list of widget output signals

Arguments: (none)
Return value:

• List of widget output names

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
34

getText Get a text property of a widget.

Arguments: (none)
Return value:

• Contents of the widget's text properties
setAttribute Setting widget properties

Arguments:

• Property name
• Property value

Return value: (none)
setText Set the text property of a widget

Arguments:

• Value for widget text property
Return value: (none)

6.2.2. Widget styling change

Using the setAttribute method, we can dynamically set a style sheet (css) for the widget. The name of the property is styleSheet.
The following examples use btnPythonTest from subsection 6.1 as the widget ID.6.1

Example 1 (background color change to red):
 gui.btnPythonTest.setAttribute(„styleSheet”, „background-color: red;”)

Example 2 (background color change to red and font color to yellow):
 gui.btnPythonTest.setAttribute(„styleSheet”, „background-color: red; color: yellow;”)

Example 3 (font size change):
 gui.btnPythonTest.setAttribute(„styleSheet”, „font-size: 24px;”)

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
35

Appendix – Step by step interface project
This appendix shows you how to build a complete interface, step by step – using the information included in the previous chapters.

As a reminder – this will be the order of tasks during construction:

Concept and sketch

According to the above sketch, we assume the construction of a compact interface for a three-axis milling machine. As you can
see, even a freehand drawing is enough. If the purpose of some elements is not clear – don’t worry, everything will be explained
later.

Creating a new interface project and editing start
• Select from the menu: ConfigurationSet screen
• In the screen selection window, click the Create new
• We give a name, for example, "ui_example"
• Select the name of the newly created interface in the list and click the Load
• Select an item from the menu: Configuration Open GUI editor

Concept
and sketch

Basic
widget
groups

Main groups
and layout

Functions
/actions

assignment
Styling
(CSS)

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
36

Basic widget groups

"Start", "Pause", "Stop" and "Rewind" group of buttons

Here we have four buttons in the horizontal position so we will use the Horizontal Layout container.

• From the list of widgets in the editor window, drag Horizontal Layout to the simCNC window
• From the same list, we drag four Tool Button widgets to the container

As a result, we should get something like this:

• We change the default names of elements to those that will allow you to find out quickly their purpose later. Here we
assumed: loutExecutionCtrlButtons for the container and btnStart, btnPause, btnStop and btnRewind for the buttons.
Specify the name in the id field of the widget properties.

The object tree in the editor window should look like this:

• Next, we change the policy of scaling the buttons so that their size adapts to the size of the container. Click on btnStart
and while holding down the shift key – click on btnRewind. With all four buttons selected, change the horizontal and
vertical size policy properties to preferred.

• We set the icons for the buttons by selecting the object and clicking the Icon Selection button next to the widget icon
property (the icons used in this example can be downloaded from here https://soft.cs-lab.eu/ui_example_icons.zip)

o btnStart  „icon_play.png”
o btnPause  „icon_pause.png”
o btnStop  „icon_stop.png”
o btnRewind  „icon_rewind.png”

The look of the group now matches what we wanted to get:

https://soft.cs-lab.eu/ui_example_icons.zip

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
37

"Open", "Close" and "Edit" group of buttons

The situation is very similar to the previous one – three buttons in the horizontal layout, except, that for the Open button we will
use a dedicated widget that will remember the list of recently opened files.

• Drag another Horizontal Layout object from the editor window to the simCNC window
• Drag the Open File Button widget and two Tool Button widgets to the container
• We give names (id property) for the container and widgets

o loutFileCtrlButtons for the container
o btnOpen, btnClose and btnEdit for buttons

• Select all three buttons and change the horizontal and vertical size policy to Preferred so that the button sizes adapt to

the size of the container
• We set button labels by modifying the text property of widgets

o "Open", "Close" and "Edit" respectively for btnOpen, btnClose and btnEdit

The group is ready and looks like this:

In turn, the tree of objects of our interface should now look like this:

File name and processing time group

The sketch would suggest that there are separate groups here, but remember that the sketch is only a general concept. It is not
uncommon for some minor changes to be made during design, whether to get a better look or to simplify the design. This is not a
problem if we do not completely change the concept. In this case, it would be good to make a new sketch.

• Drag the Form Layout object from the editor window to the simCNC window
• We give the name of the added container (id property) on loutFileInfo
• We set the container's vertical size policy to Maximum – thanks to this, we will avoid unnecessary enlargement of the

widget when scaling the window
• We drag four Label elements into the added container and give them names (id) according to the table below:

lbFileNameDesc lbFileName
lbTimeRemainingDesc lbTimeRemaining

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
38

• We change the text property of the added labels according to the following table:

File Name -
Time Remaining -

The group is ready and should look like the following:

And this is how it should look like in the object tree:

Axis position indicator group

For each of the axes, we have here a group of six widgets in a horizontal layout:

• Axis name (Label)
• Program position reset button (Tool Button)
• A field for displaying and editing items (Line Edit)
• Three limit switch and homing indicator lights (Digital IO indicator)

We start by creating a group for one axis:

• Drag the Horizontal Layout container from the editor window to the simCNC window
• We drag widgets into the container one by one, placing them from the left to the right side of the container:

o Label
o Tool Button
o Line Edit
o 3x Digital IO Indicator

We should get something like this:

• Set horizontal and vertical size policy for the button (Tool Button) to Preferred
• Set text property for the button to „Zero”
• Set vertical size policy for edit field (Line Edit) to Preferred

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
39

• Set text property of Label object to X
• Set text property of Digital IO indicator lights consecutively (from left) to „-”, „H” and „+”

We have a group of one axis almost ready:

• Drag the Vertical Layout container from the editor window to the simCNC window
• Select the container in which we have just added widgets and press CTRL-X (cut)
• We select the empty Vertical Layout container that we added and press CTRL-V (paste) three times

The effect should look like the following:

• We set the widget names (id property)

o X axis group – container name: loutAxisXDRO and widget as follows, from left:
 lbAxisXName
 btnAxisXZero
 edAxisXPosition
 ioAxisXLimitNeg
 ioAxisXHoming
 ioAxisXLimitPos

o Y and Z axis group – same as X-axis, only in the names we change "AxisX" to "AxisY" and "AxisZ"
respectively

o Parent container name (Vertical Layout): loutAxesDROs

The object tree should look like this:

Remember to save the project from time to time by pressing CTRL-S or clicking the Save key in the editor window.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
40

„Machine coords” and „Ignore Soft Limit” check box group

A group of two Checkbox widgets in a horizontal layout:

• switching between displaying machine and software coordinates (Machine Coords)
• disable software limits (Ignore SoftLimit)

We start by adding a container (Horizontal Layout) as standard:

• Drag the Horizontal Layout container from the editor window to the simCNC window
• We drag two Checkbox widgets to the container
• We set the names (id property)

o Container: loutMiscCheckboxes
o cbMachineCoords and cbIgnoreSoftLimit for widgets

• Set the display text (text property) for Checkbox widgets

o „Machine Coords” and „Ignore SoftLimit”

As a result, the group should look like the following:

And this is how the group should look in the tree of project objects:

 „Ref All”, „Probe”, „Park” and „Go To XY” group of buttons

Here we have a group of four buttons (Tool Button) in a Horizontal Layout.

• „Ref All”  axis homing
• „Probe”  tool measurement
• „Park”  moving machine axis to park position
• „Go To XY”  moving X, Y axes to program zero

Again, we start by adding a container:

• Drag the Horizontal Layout container from the editor window to the simCNC window
• Drag four Tool Buttons to the container

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
41

• Select (shift-clicked) button widgets and change their horizontal and vertical size policy properties to Preferred so that
their size automatically adjusts to the container

• Set the object names (id property):
o Container name: loutMiscButtons
o Widgets name: btnRefAll, btnProbe, btnPark, btnGoToXY

• We set the text property of the buttons:
o From left: „Ref All”, „Probe”, „Park”, „Go To XY”

The effect should be as follows:

And this is what a group in the object tree should look like:

Widget with „Tool Info” and „Offsets” tabs

• Drag the Tab Box widget from the editor window to the simCNC window
• Select the widget and set the number of bookmarks (tabs quantity property) to "2".

In the object tree, we see three new objects: TabWidget, which controls the display and switching of tabs, and two
TabWidgetFrame objects, which are containers of individual tabs – in them that we will place widgets.

• We give names (property id):
o Object TabWidget: twToolInfoAndOffsets
o Tabs: tabToolInfo oraz tabOffsets

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
42

• Set labels for tabs (title property) - You must first select the appropriate tab in the object tree, e.g., by clicking on
tabToolInfo:

o „Tool Info” for tabToolInfo and „Offsets” for tabOffsets

Our widget should look like this at this point:

Now we can proceed to create the content of the tabs. The following is a concept of the Tool Info tab:

Here we can see several Label objects – descriptions and displayed values (three-dot on the sketch) and one Show Tool Table
button to open the tool table window. Label objects will be placed in a form (Form Layout), while the tab will have a vertical
arrangement (Vertical Layout) containing the form and a button (Tool Button).

• Drag Form Layout from the editor window to the Tool Info tab
• Drag the Tool Button from the editor window to the Tool Info tab, placing it below the Form Layout container

This should look like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
43

• Click tabToolInfo in the object tree and set the layout type property to Vertical. This defines the placement of objects in
the tab.

• Set the name(id)of the tab container to loutTabToolInfo

• We give names (id) for the Form Layout container and for the button

o Container: loutToolInfoLabels
o Button: btnShowToolTable

• Set the horizontal size policy property for the button to Preferred
• We set the text property for the button to "Show Tool Table"

At this time, the widget should look like this:

And this is how it should look in the object tree:

We can proceed to place Label objects in the loutToolInfoLabels container.

• We drag eight Label objects to the loutToolInfoLabels container. We place them in a way corresponding to the
sketch, i.e., four rows of two widgets.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
44

• We give the Label widgets a name(id), according to the table below

lbSelectedToolDesc lbSelectedTool
lbCurrentToolDesc lbCurrentTool
lbToolOffsetNrDesc lbToolOffsetNr
lbToolDiameterDesc lbToolDiameter
• We give Label widgets a text property according to the following table

Tool (T) -
Tool (Current) -
Tool Offset Nr -
Tool Diameter -

The widget should now look like this:

And so the tree of objects:

The "Offsets" tab remains. Here the matter is simpler because the tab contains only one widget of the Offsets Table type.

• Click on tabOffsets in the object tree
• We set the layout type to Vertical (Pionowe). The type of layout does not matter much here because only one
widget will be placed in the container, but you must choose one so that the size of the widget automatically adapts to
the size of the container).

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
45

• Set the name (id) for the tab container to loutTabOffsets

• In the simCNC window, click on the "Offsets" tab to activate it
• Drag the Offset Table widget to the "Offsets" tab from the editor window
• We give the name (id) to the Offsets Table widget on otOffsets

The widget is visually ready and should now look like the following:

In the object tree, the complete widget should look like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
46

„JOG” group

From the top, we can see in the sketch:

• Check Box for allowing axis control from the keyboard
• Label and Horizontal Slider to set the jog speed
• Label and Tool Button to change jog mode
• Label and Tool Button to select the JOG step
• Separation line (Frame)
• A group of buttons (Tool Button) arranged in a grid (Grid Layout) to control individual axes

We will use the Group Box container widget here. The following are the design steps in turn:

• Drag the Group Box widget from the editor window to the simCNC window
• Set the name(id) of the widget to gbJog
• Set the vertical arrangement – layout type property to Vertical (Pionowe)

• Set the name(id)of the container to loutJog

• Set the group label (title property) to "JOG"
• We drag the following widgets from the editor to the created group, placing them successively from the top:

o Check Box
o Form Layout
o Frame
o Grid Layout

When placing widgets in a container with Auto-Layout enabled, pay attention to the tags that appear. They show where
the new object will be located.

This is how the widget should look like now:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
47

And so, the tree of objects:

• Set names (id) of the added objects, one by one, from the top: cbKeyboardJogEnable, loutJogConfig, frJogLine and
loutJogButtons

• We set the text property of the cbKeyboardJogEnable widget to "Keyboard Enable"
• Set the shape property of the frJogLine widget to Horizontal Line
• Set the vertical size policy property of the frJogLine widget to Maximum
• To the loutJogConfig container we drag from the editor three widgets Label and Horizontal Slider and two buttons (Tool

Button), placing them according to the sketch

• We give the new widgets a name (id) according to the table below:

lbJogSpeedDesc slJogSpeed
lbJogModeDesc btnJogMode
lbJogStepDesc btnJogStep

• We set the widgets text property according to the table below:

JOG Speed (not applicable)
JOG Mode -
JOG Step -

• For the btnJogMode and btnJogStep widgets, we change the horizontal size policy property to Preferred to match the
size of the container horizontally

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
48

And the objects tree like this:

• We add six Tool Buttons to the loutJogButtons group. We place them according to the sketch. Again, pay attention to
the displayed tags that show where the added widget will be "dropped". For this group, the easiest way to proceed is
in the following order:

o We put four buttons first

o Drag the "2" button down, changing its position in the grid

o Add the last two buttons

• We give names (id) to the buttons according to the table below

 btnJogYPos btnJogZPos
btnJogXNeg btnJogXPos
 btnJogYNeg btnJogZNeg

• We set the text property for the buttons according to the following table: (arrows are unicode characters, for ease of

use, they can be copied and pasted)

 Y↑ Z↑
←X X→
 Y↓ Z↓

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
49

• In the object tree, select all btnJog buttons... and set the horizontal and vertical size policy properties to Preferred

• Set the buttons btnJog ... to a slightly larger font (font property) – e.g. "Arial 14"
• Select the loutJogButtons object and set the following properties to "0":

o left, right, top i bottom margin
o horizontal i vertical spacing

Visually, the JOG group is ready and should look like below:

And this is how the JOG group should look in the object tree:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
50

„Feedrate” group

In the sketch above we have the following elements (from the top):

• Label and Horizontal Slider for machining speed correction (FRO)
• The group (Horizontal Layout) of buttons (Tool Button) allows you to set frequently used FRO values quickly
• Label and edition area (Line Edit) to display and change the set machining speed
• Label and edition area (Line Edit) to display the machining speed with FRO correction applied
• Label and edition area (Line Edit) to display the resultant current speed of a machine axis

As previously, we will use the Group Box container widget.

• Drag the Group Box widget from the editor window to the simCNC window
• Set the vertical type of layout by changing the layout type property to Vertical
• We give names (id) for the widget and the container contained in it: gbFeedrate and loutFeedrate

• We change the group label (title property) to "Feedrate"
• We add the following containers to the container, placing them from top to bottom:

o 2x Horizontal Layout
o Form Layout

• We give them names (id): loutFroSlider, loutFroButtons, loutFeedrateInfo
• To the container loutFroSlider we add widgets Label and Horizontal Slider and we give them names lbFroDesc

and slFro
• We change text properties of lbFroDesc widget to „FRO”
• We add four buttons (Tool Button) to the loutFroButtons container and give them names (id): btnFro5,

btnFro50, btnFro100, btnFro200
• We change the text property of the buttons respectively to "5%", "50%", "100%" and "200%"
• We change the horizontal size policy property of the buttons to Preferred
• We change the vertical size policy property for the loutFroSlider container to Maximum

 (this cause the container is not stretched vertically)
• We change the vertical size policy property for the loutFroButtons container to Maximum
• We add three Label widgets and three Line Edit widgets to the loutFeedrateInfo container, placing them as in

the sketch: Label on the left, Line Edit on the right

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
51

• We give the widgets a name (id) according to the following table:

lbFeedrateDesc edFeedrate
lbFeedrateOvDesc edFeedrateOv
lbFeedrateCurrentDesc edFeedrateCurrent

• We change the widgets' text property according to the table below

Feedrate (F) -
Feedrate (Ov.) -
Feedrate (Current) -

• Set the read only property for the edFeedrateOv and edFeedrateCurrent widgets

The "Feedrate" group is visually ready and should look like this:

And this is how it should look like in the object tree:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
52

„Spindle & Cooling” group

In the sketch above, we have the following elements (from the top):

• Label and Horizontal Slider for spindle speed correction (SRO)
• Spindle speed correction reset button (Tool Button)
• Label and Line Edit to read and modify the set spindle rotation
• Three buttons (Tool Button) for switching on a spindle and coolant

As before – we will use the Group Box container widget.

• Drag the Group Box widget from the editor window to the simCNC window
• Set the vertical type of layout by changing the layout type property to Vertical
• We give names (id) to the widget and the container it contains: gbSpindleAndCooling and loutSpindleAndCooling

• Change the group label (title property) to "Spindle && Cooling" (The "&" character is a special character, so to have it
displayed correctly, you must enter it twice)

• We add the following elements to the container, placing them from top to bottom
o Horizontal Layout
o Tool Button
o 2x Horizontal Layout

• We give names (id): loutSroSlider, btnSroReset, loutSpindleInfo, loutSpindleAndCoolingCtrl
• To the loutSroSlider container add Label and Horizontal Slider
• We give names (id): lbSroDesc and slSro
• Set the text property of the lbSroDesc widget to "SRO"
• Set the text property of the btnSroReset widget to "Set to 100%"

• Add Label and Line Edit to the loutSpindleInfo container

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
53

• We give them names (id): lbSpindleSpeedDesc and edSpindleSpeed
• We set the text property of the added widgets to "Spindle Speed" and "-".
• To the bottom container loutSpindleAndCoolingCtrl we add elements, from the left:

o 2x Tool Button with Progress Bar
o Tool Button with LED

• We give the added buttons a name(id): btnSpindleCW, btnSpindleCCW and btnFlood
• Set the text property for the buttons: "Spindle CW", "Spindle CCW" and "Flood"
• We change the horizontal and vertical size policy property buttons to Preferred
• Select the LED visible property for the btnFlood button
• We change the vertical size policy property of the loutSroSlider and loutSpindleInfo containers to Maximum

The "Spindle & Cooling" group visually is ready and should look like this:

And this is what it should look like in the object tree:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
54

Main groups and layout

With all the basic widget groups created, we can start designing main groups. In the sketch at the beginning of the chapter, you
can see that the design is made of three columns of widgets, and in each column, the elements are arranged vertically.

The left column

In the sketch, we see the left main group of widgets. It contains (from the top):

• 3D path preview (Path View)
• loutExecutionCtrlButtons buttons group
• A button to put a machine in standby mode (Tool Button with LED)
• Preview of a file in text form – list of G-Codes (GCode List)
• loutFileCtrlButtons buttons group
• File name and forecast processing time group - loutFileInfo

List of design operations:

• Drag the Vertical Layout container from the editor window to the simCNC window
• We give a name (id) to the container: loutLeftColumn
• We drag the following elements into the container, arranging them from top to bottom:

o PathView
o The pre-designed group loutExecutionCtrlButtons
o Tool Button with LED
o GCode List
o The pre-designed group loutFileCtrlButtons
o The pre-designed group loutFileInfo

• We give names (id) to PathView, ToolButton with LED and GCode List as follows:
view3D, btnCtrlEnable and gcodeList

• We set the LED visible property for the btnCtrlEnable button
• We set horizontal and vertical size policy property for the btnCtrlEnable button to Preferred
• We set text property of the same button to „Machine Enable”

The left column of widgets is ready and should look like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
55

The central column
In the sketch we see the central main group of widgets. It contains (from the top):

• A group of axis indicators - loutAxesDROs
• A group of check boxes loutMiscCheckBoxes
• A group of buttons loutMiscButtons
• A widget for manual input of MDI line machine commands
• A tabbed widget - twToolInfoAndOffsets
• Message Console - Python Console
• A modal G-codes list widget - CurrentGCodesWidget

List of design operations:

• Drag the Vertical Layout container from the editor window to the simCNC window
• We give a name (id) to the container: loutCentralColumn
• We drag the following elements into the container, arranging them from top to

bottom:
o The pre-designed group loutAxesDROs
o The pre-designed group loutMiscCheckBoxes
o The pre-designed group loutMiscButtons
o MDI line
o The pre-designed widget twToolInfoAndOffsets
o Python Console
o Current g-codes

• We name (id) the MDI line, Python Console, and Current g-codes widgets as follows: mdiLine, pythonConsole,
modalGCodes

The main central group of widgets is ready and should look like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
56

The right column

In the sketch we see the right main group of widgets. It contains (from the top):

• A group of manual control - gbJog
• A group of federate control - gbFeedrate
• A group of spindle and coolant control - gbSpindleAndCooling

List of design operations:

• Drag the Vertical Layout container from the editor window to the simCNC window
• We name (id) the container: loutRightColumn
• We add the following elements to the container, arranging them from top to bottom:

o The pre-designed group gbJog
o The pre-designed group gbFeedrate
o The pre-designed group gbSpindleAndCooling

The right main group is ready and should look like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
57

The main container layout

With all the three main groups of our interface ready, it’s time to choose the type of layout in the
main window. As you can see in the picture on the right, for the main container we can choose
between the four types of layouts: horizontal, vertical, in the grid, and in the form. In this case,
however, we will use the splitter so that an operator can easily change the division of space
between the three columns of the interface. There is no Splitter in the available options, but you
can get around it in a very simple way.

Follow the steps:

• Drag the Splitter object from the editor window to the simCNC window
• Give it a name (id): splMain
• Drag the following groups loutLeftColumn, loutCentralColumn and loutRightColumn to the splMain container. We drop

them at the right edge to keep the desired column order.

• Pay attention to the object tree, whether the correct hierarchy is preserved.

• Set the Horizontal Layout for the main window:

Since after adding the splitter, in the main window we really have only one group (splMain), it does not matter whether
we choose horizontal or vertical layout. The splMain group will simply be adjusted to the size of the window anyway.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
58

• In the object tree, select the Horizontal Layout object at the very top and give it a name (id): loutMain

We can now close the editor window for a moment (remember to keep the changes) and look at the effects of your work done so
far. The program window should look like this:

As you can see, the appearance of the design is in line with our concept. It could be made more visually attractive, but we will take
care of this later. Now it is time for the practical side, i.e., making the interface fulfill its primary task – presenting information and
accepting operator commands.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
59

Assigning functions/actions

Most interface objects are inactive at this stage. To make the widgets complete assumed tasks we have to define their input and
output functions. Open the interface editor again (menu ConfigurationOpen GUI editor). Below is a table of project widgets
along with the input and output properties that need to be set.
For example, for the G-Code execution start button (button with "play" icon in the left column below the 3D view) – btnStart set
the property Output: clicked to Start trajectory).

WIDGET„ID” PROPERTY TYPE VALUE DESCRIPTION
btnStart Output: clicked Start trajectory Start G-Code after clicking the button

btnPause Output: clicked Set Pause On/Off Enable/disable the pause of G-Code execution after
clicking the button

btnStop Output: clicked Stop trajectory Stop G-code execution after clicking the button

btnRewind Output: clicked Rewind trajectory Rewind G-code to the beginning after clicking the
button

btnCtrlEnable Output: clicked Switch to EStop/idle
state

Switch between EStop and Standby status after clicking
this button

btnCtrlEnable Input: LED state CSMIO enable A state of the diode (LED) on the button will change
along with the standby of a CSMIO controller

btnOpen - - Widget used to open G-Code files, which does not
require configuration

btnClose Output: clicked Run script There is no file closing in the action list, but this can be
done from a Python macro. For a list of macros for
widgets, see the section below.

btnEdit Output: clicked Edit G-Code Open the G-code file editor

lbFileName Input: text GCode file path Displaying a path of the loaded G-Code file

lbTimeRemaining Input: text Remain path time Display of remaining machining time

btnAxisXZero Output: clicked Run Script Reset a program coordinate for an X-axis from a Python
macro. For a list of macros for widgets, see the section
below.

btnAxisYZero Output: clicked Run Script As above, for a Y axis

btnAxisZZero Output: clicked Run Script As above, for a Z axis

edAxisXPosition Input: text Axis X display position Display of a coordinate (program/machine) for an X axis

edAxisXPosition Output: returnPressed Set axis X prog position Modification of a program coordinate for an X axis after
pressing the "return" key

edAxisYPosition Input: text Axis Y display position Display of a coordinate (program/machine) for a Y axis

edAxisYPosition Output: returnPressed Set axis Y prog position Modification of a program coordinate for a Y axis after
pressing the "return" key

edAxisZPosition Input: text Axis Z display position Display of a coordinate (program/machine) for a Z axis

edAxisZPosition Output: returnPressed Set axis Z prog position Modification of a program coordinate for a Z axis after
pressing the "return" key

ioAxisXLimitNeg Input: state Signal value
(IP;0;mkit;0limit--;0)

A state of an indicator light related to a state of signal
„limit--” MotionKit’a no. 0 CSMIO/IP

ioAxisXHoming Input: state Signal value
(IP;0;mkit;0Home;0)

A state of an indicator light related to a state of signal
„home” MotionKit’a no. 0 CSMIO/IP

ioAxisXLimitPos Input: state Signal value
(IP;0;mkit;0limit++;0)

A state of an indicator light related to a state of signal
„limit++” MotionKit’a no. 0 CSMIO/IP

ioAxisYLimitNeg Input: state Signal value
(IP;0;mkit;1limit--;0)

A state of an indicator light related to a state of signal
„limit--” MotionKit’a no. 1 CSMIO/IP

ioAxisYHoming Input: state Signal value
(IP;0;mkit;1Home;0)

A state of an indicator light related to a state of signal
„home” MotionKit’a no. 1 CSMIO/IP

ioAxisYLimitPos Input: state Signal value
(IP;0;mkit;1limit++;0)

A state of an indicator light related to a state of signal
„limit++” MotionKit’a no. 1 CSMIO/IP

ioAxisZLimitNeg Input: state Signal value
(IP;0;mkit;2limit--;0)

A state of an indicator light related to a state of signal
„limit--” MotionKit’a no. 2 CSMIO/IP

ioAxisZHoming Input: state Signal value
(IP;0;mkit;2Home;0)

A state of an indicator light related to a state of signal
„home” MotionKit’a no. 2 CSMIO/IP

ioAxisZLimitPos Input: state Signal value
(IP;0;mkit;2limit++;0)

A state of an indicator light related to a state of signal
„limit++” MotionKit’a no. 2 CSMIO/IP

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
60

WIDGET„ID” PROPERTY TYPE VALUE DESCRIPTION
cbMachineCoords Input: checkbox state Ref position displayed Check box status related to whether machine

coordinates are currently displayed

cbMachineCoords Output: stateChanged Set position display to
ref

Switch to the machine coordinates display when the
check box is selected

cbIgnoreSoftLimit Input: checkbox state Global soft limit
disabled

Check box status related to software limits disabled
status

cbIgnoreSoftLimit Output: stateChanged Disable global soft limit Disable software limits after selecting the check box

btnRefAll Output: clicked Ref all axes Start all axes homing after clicking this button

btnProbe Output: clicked Execute probing script Run the default Python macro for tool measuring after
clicking this button

btnPark Output: clicked Run script Run the Python macro ride to the park position. For a
list of macros for widgets, see the section below.

btnGoToXY Output: clicked Run script Run the Python macro ride to the working offset
position. For a list of macros for widgets, see the
section below.

lbSelectedTool Input: text Selected tool number Display the number of a currently selected tool

lbCurrentTool Input: text Spindle tool number Display the tool number that is currently in a spindle

lbToolOffsetNr Input: text Tool offset number Display the selected tool offset number

lbToolDiameter Input: text Tool diameter Display the diameter of a current tool

btnShowToolTable Output: clicked Tool Table Display the list of tools after clicking

cbKeyboardJogEnable Input: checkbox state Key Control Checkbox status related to keyboard machine control
enable state

cbKeyboardJogEnable Output: state changed Key Control Allow a machine to be controller by a keyboard if the
check box is selected

slJogSpeed Input: value Jog speed Slider position related to JOG speed

slJogSpeed Output: valueChanged Set Jog Speed Changing position of the slider will change current JOG
speed

btnJogMode Input: text Jog mode The current JOG mode will set text on the button

btnJogMode Output: clicked Set Jog mode Clicking the button will change the current JOG mode

btnJogStep Input: text Jog step The current jog step will set text on the button

btnJogStep Output: clicked Run Script Running Python macro that will cyclically switch
between values. For a list of macros for widgets, see the
section below.

btnJogXNeg Output: pressed Jog X- pressed Pressed button triggers JOG X-axis ride in the negative
direction

btnJogXNeg Output: released JOG X- released Released button stops JOG X-axis ride in the negative
direction.

btnJogXPos Output: pressed Jog X+ pressed Pressed button triggers JOG X-axis ride in the positive
direction

btnJogXPos Output: released JOG X+ released Released button stops JOG X-axis ride in the positive
direction.

btnJogYNeg Output: pressed Jog Y- pressed Pressed button triggers JOG Y-axis ride in the negative
direction

btnJogYNeg Output: released JOG Y- released Released button stops JOG Y-axis ride in the negative
direction.

btnJogYPos Output: pressed Jog Y+ pressed Pressed button triggers JOG Y-axis ride in the positive
direction

btnJogYPos Output: released JOG Y+ released Released button stops JOG X-axis ride in the positive
direction.

btnJogZNeg Output: pressed Jog Z- pressed Pressed button triggers JOG Z-axis ride in the negative
direction

btnJogZNeg Output: released JOG Z- released Released button stops JOG Z-axis ride in the negative
direction.

btnJogZPos Output: pressed Jog Z+ pressed Pressed button triggers JOG Z-axis ride in the positive
direction

btnJogZPos Output: released JOG Z+ released Released button stops JOG Z-axis ride in the positive
direction.

slFro Input: value Fro The slider position will be set as the FRO value changes

slFro Output: valueChanged Set Fro Changing the slider position will change the current FRO
value

btnFro5 Output: clicked Run Script Running a Python macro that will set the FRO value to
5%. For a list of macros for widgets, see the section
below.

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
61

WIDGET„ID” PROPERTY TYPE VALUE DESCRIPTION
btnFro50 Output: clicked Run Script Running a Python macro that will set the FRO value to

50%. For a list of macros for widgets, see the section
below.

btnFro100 Output: clicked Run Script Run a Python macro that will set the FRO value to
100%. For a list of macros for widgets, see the section
below.

btnFro200 Output: clicked Run Script Run a Python macro that will set the FRO value to
200%. For a list of macros for widgets, see the section
below.

edFeedrate Input: text Feedrate Displaying a currently set feed rate.

edFeedrate Output: returnPressed Set Feedrate Setting feed rate when pressing the return key.

edFeedrateOv Input: text Feedrate override Display of the currently set feed rate, including FRO

edFeedrateCurrent Input: text Current velocity Displaying the current resultant velocity - speed of a
tool relative to a material.

slSro Input: text Sro The slider position will be set as the SRO value changes

slSro Output: valueChanged Set Sro Changing the slider position will change the current SRO
value

btnSroReset Output: clicked Run Script Running a Python macro that will set the SRO value to
100%. For a list of macros for widgets, see the section

below.

edSpindleSpeed Input: text Spindle Speed Displaying currently set spindle speed

edSpindleSpeed Output: returnPressed Set Spindle Speed Setting spindle speed when pressing the return key

btnSpindleCW Output: clicked Run Spindle Clockwise Enable right spindle revs after clicking the button

btnSpindleCW Input: value Spindle CW percent The bar on the button will show progress in achieving
set revs (right revs)

btnSpindleCCW Output: clicked Run Spindle
Counter-Clockwise

Enable left spindle revs after clicking the button

btnSpindleCCW Input: value Spindle CCW percent The bar on the button will show progress in achieving
set revs (left revs)

btnFlood Output: clicked Set Flood On/Off Enable/disable coolant

btnFlood Input: LED state Flood on The LED on the button will be lit when the coolant is on

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
62

Python macros for widgets with „Run script” action

As you can see in the table above, some widgets do not have a specific function assigned, only Run script, which activates a Python
macro. Below are the names of files with their source codes. You can use the built-in simCNC editor to create files (menu
MacrosShow script editor), or any other editor, e.g., VS Code. It is best to save the files in the projected screen directory, in the
scripts subdirectory. The files must have a ".py" extension.

For Windows, this will be the path: „C:\Program Files\simCNC\screens\ui_example\scripts”

For Linux: “/opt/simCNC/screens/ui_example/scripts”
For macOS: “/Applications/CS-Lab/simCNC.app/Contents/MacOS/screens/ui_example/scripts/”

Macro for btnClose button - file„btnClose.py”

Macro for btnAxisXZero button - file„btnAxisXZero.py”

Macro for btnAxisYZero button - file„btnAxisYZero.py”

Macro for btnAxisZZero button - file„btnAxisZZero.py”

Macro for btnPark button - file„btnPark.py”

Macro for btnGoToXY button - file„btnGoToXY.py”

Macro for btnJogStep button - file„btnJogStep.py”

Macro for btnFro5 button - file„btnFro5.py”

d.closeGCodeFile()
print(„GCode file closed.”)

d.setAxisProgPosition(Axis.X, 0)
print("Axis X prog position set to 0.000")

d.setAxisProgPosition(Axis.Y, 0)
print("Axis Y prog position set to 0.000")

d.setAxisProgPosition(Axis.Z, 0)
print("Axis Z prog position set to 0.000")

d.executeGCode("G0G53 Z0");
d.executeGCode("G0G53 X0 Y0");
print("Go to park position finished")

d.executeGCode("G0G53 Z0");
d.executeGCode("G0 X0 Y0");
print("Go to material zero XY position finished")

currentStep = d.getJogStep()
newStep = currentStep * 10.0
if newStep > 1.0:
 newStep = 0.001
d.setJogStep(newStep)
print("JOG step set to: {: 3f}" format(newStep))

d.setFRO(5)
print("FRO set to: {:.1f}%".format(d.getFRO()))

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
63

Macro for btnFro50 button - file„btnFro50.py”

Macro for btnFro100 button - file„btnFro100.py”

Macro for btnFro200 button - file„btnFro200.py”

Assigning macros to widgets

To assign a macro to a widget, select the widget, and in the list of properties, click the macro selection button under the Run script
action.

This is how it should look like for the btnClosebutton, after selecting the "btnClose.py" macro

In this way, we assign all of the above macros to the widgets.

Additions and minor corrections

At this stage, we already have an interface that works and can be used. Before we start working on visual improvements and
cosmetics, we will make a few small corrections.

In edit mode, we change the text property of the lbAxisYName widget to "Y" and the lbAxisZName widget to "Z".

2. Setting the value range for the slJogSpeed, slFro, and slSro sliders
a. Set maximum propriety of slJogSpeed widget to 100
b. Set maximum propriety of slFro widget to 200
c. Set maximum propriety of slSro widget to 200

3. Setting a value range for spindle revs visualization bars on the btnSpindleCW and btnSpindleCCW buttons
a. Set maximum propriety of btnSpindleCW widget to 1
b. Set maximum propriety of btnSpindleCCW widget to 1

4. Setting the coordinate display format to X.XXX
a. In the display format property field of the edAxisXPositionwidget, edAxisYPosition, and edAxisZPosition, type

"%.3f" (without quotation marks)

d.setFRO(50)
print("FRO set to: {:.1f}%".format(d.getFRO()))

d.setFRO(100)
print("FRO set to: {:.1f}%".format(d.getFRO()))

d.setFRO(200)
print("FRO set to: {:.1f}%".format(d.getFRO()))

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
64

Stylization

As mentioned earlier, this step is optional. Our interface should function properly at this stage. However, it is worth spending a
little more work to perfect its appearance.

At the beginning, we will "fine-tune" the scaling and the rules for dividing space of some widgets and containers. To do this, we
set the following properties to objects:

OBJECT NAME („ID”) PROPERTY VALUE
loutLeftColumn stretch 1,0,0,1,0,0
loutExecutionCtrlButtons minimum height 40
loutExecutionCtrlButtons left, right, top, bottom margin 0
loutExecutionCtrlButtons spacing 1
btnCtrlEnable minimum height 40
loutFileCtrlButtons minimum height 40
loutFileCtrlButtons left, right, top, bottom margin 0
loutFileCtrlButtons spacing 1
loutFileInfo left, right, top, bottom margin 0
loutAxesDROs left, right, top, bottom margin 0
loutAxesDROs spacing 1
loutAxisXDRO left, right, top, bottom margin 1
loutAxisXDRO spacing 1
loutAxisYDRO left, right, top, bottom margin 1
loutAxisYDRO spacing 1
loutAxisZDRO left, right, top, bottom margin 1
loutAxisZDRO spacing 1
loutMiscButtons minimum height 40
loutMiscButtons left, right, top, bottom margin 0
loutMiscButtons spacing 1
loutToolInfoLabels left, right, top, bottom margin 0
btnShowToolTable minimum height 30
loutRightColumn stretch 1,0,0
loutJogConfig vertical size policy Maximum
frJogLine vertical size policy Maximum
loutFroButtons minimum height 30
loutFroButtons left, right, top, bottom margin 0
loutFroButtons spacing 1
btnFro5 vertical size policy Preferred
btnFro50 vertical size policy Preferred
btnFro100 vertical size policy Preferred
btnFro200 vertical size policy Preferred
btnSroReset minimum height 30
loutSpindleAndCoolingCtrl minimum height 40
loutSpindleAndCoolingCtrl left, right, top, bottom margin 0
loutSpindleAndCoolingCtrl spacing 1

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
65

The interface should now look a bit neater and compact:

Let's also set a red color for the lights indicating states of limit switches:

OBJECT NAME („ID”) PROPERTY VALUE
ioAxisXLimitNeg color (red)
ioAxisXLimitPos color (red)
ioAxisYLimitNeg color (red)
ioAxisYLimitPos color (red)
ioAxisZLimitNeg color (red)
ioAxisZLimitPos color (red)

(...) and right alignment and slightly larger font for axis name widgets and coordinate display widgets:

OBJECT NAME („ID”) PROPERTY VALUE
edAxisXPosition horizontal alignment Right
edAxisXPosition font Arial 20
lbAxisXName font Arial 20
edAxisYPosition horizontal alignment Right
edAxisYPosition font Arial 20
lbAxisYName font Arial 20
edAxisZPosition horizontal alignment Right
edAxisZPosition font Arial 20
lbAxisZName font Arial 20

(...) let's disable the additional frame in the widget with the "Tool Info" and "Offsets" tabs:

Nazwa („id”) obiektu PROPERTY VALUE
tabToolInfo shape No frame
tabOffsets shape No frame

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
66

(…) let's center the display of some parameters

OBJECT NAME („ID”) PROPERTY VALUE
lbSelectedTool Horizontal alignment Centered
lbCurrentTool Horizontal alignment Centered
lbToolOffsetNr Horizontal alignment Centered
lbToolDiameter Horizontal alignment Centered
edFeedrate Horizontal alignment Centered
edFeedrateOv Horizontal alignment Centered
edFeedrateCurrent Horizontal alignment Centered
edSpindleSpeed Horizontal alignment Centered

and set the properties of the lbFileName widget to fit longer names:

OBJECT NAME („ID”) PROPERTY VALUE
lbFileName Word wrap (selected)
lbFileName Vertical size policy Maximum
lbFileName Minimum height 32

The interface now looks like this:

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
67

Final cosmetic using css style sheets

Styling with style sheets is a powerful tool, but rather intended for more advanced users. A comprehensive overview of all features
is beyond the scope of this manual. A simple example is provided later in this chapter, and for those interested, the links below
will provide more detailed information on this subject.

https://www.w3schools.com/css/css_intro.asp
https://doc.qt.io/qt-5/stylesheet-syntax.html

I also encourage you to read and experiment with the css files in "default" screen designs. Please remember to make a copy and
work on it, because any changes to the default screens may be overwritten after updating the simCNC software.

Properties passed by simCNC
SimCNC passes several properties to css sheets that allow you to change the appearance of elements depending on, for example,
a state of the program or the dark theme mode.

PROPERTY VALUE DESCRIPTION
darkTheme true

false
Returns true if a dark theme is active

state estop
idle
homing
trajectory
jog
mdi
mpg

Returns a current state of a machine

csmioState init
disabled
prepare
run
fault

Returns a current status of a CSMIO/IP device

pause true
false

Returns true if machining is paused (pause)

Axis<X,Y,Z, …>Referenced true
false

Returns true if an axis is correctly referenced

Axis<X,Y,Z, …>Enabled true
false

Returns true if a given axis is enabled in the configuration

Assumptions of the example
In the following example, we will perform the following stylizations:

• We will change a background color and Y-axis line in the 3D preview
• We will change colors of X, Y, Z axes names and make the colors will depend on reference status of a given axis.
• We will darken the background under some labels.
• We will make the JOG buttons to backlight when we hover a mouse over them.
• We will make the FRO and SRO reset buttons to backlight when we hover a mouse over them.

Grouping
It often happens that we want to set similar style properties for many widgets. You can simplify your work by setting the group
property in the interface editor. Thanks to this, in the css sheet we can refer to a group, not to individual elements. Now we set
group property for the widgets according to the table below:

https://www.w3schools.com/css/css_intro.asp
https://doc.qt.io/qt-5/stylesheet-syntax.html

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
68

WIDGET NAME („ID”) GROUP NAME (GROUP PROPERTY)
btnJogXPos JogButtons
btnJogXNeg JogButtons
btnJogYPos JogButtons
btnJogYNeg JogButtons
btnJogZPos JogButtons
btnJogZNeg JogButtons
btnFro100 Set100PercentButtons
btnSroReset Set100PercentButtons
lbAxisXName AxesNameLabels
lbAxisYName AxesNameLabels
lbAxisZName AxesNameLabels
lbSelectedTool DarkerLabels
lbCurrentTool DarkerLabels
lbToolOffsetNr DarkerLabels
lbToolDiameter DarkerLabels
lbFileName DarkerLabels
lbTimeRemaining DarkerLabels

Colors changing in the 3D preview
From the directory of our interface, we open the file "colors.css". You can use any text editor, such as Notepad or Visual Studio
Code. The advantage of the latter is that it colors and partially analyzes the correctness of syntax.

In the file, we edit the background color (path_view_background) and the color of the Y axis (axisY) to make it more visible on
the new background:

[type="path_view_background"] {
 color: #202020;
}
[type="axis_Y"] {
 color: #4646ff;
}

Creating a new style sheet file
In the directory of our interface, we create a new text file called "widgets.css" – so in our example, in Windows OS, the path will
be like this:

C:\Program Files\simCNC\screens\ui_example\widgets.css
simCNC automatically searches the interface directory for .css files when the screen loads.

Changing colors of axis labels and visualization of reference state
In the "widgets.css" file, we add the following instructions:

[group="AxesNameLabels"] {

 background-color: #e80;

 border-radius: 3px;

 margin: 2px;

 color: #444;

}

[id="lbAxisXName"][axisXReferenced="true"] {

 background-color: #a0000000;

 color: #0f0;

}

[id="lbAxisYName"][axisYReferenced="true"] {

 background-color: #a0000000;

 color: #0c0;

}

[id="lbAxisZName"][axisZReferenced="true"] {

 background-color: #a0000000;

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
69

As you can see, we refer to widgets here in two ways. First, we set the default appearance for the entire group (AxesNameLabels),
while below for each axis, conditional styling is performed separately if the axis homing flag is set to true.

The modified properties are:

• background-color
• border-radius – rounded corners
• margin
• color – a label text color

Below we see the effect when the X-axis is referenced and the Y and Z axes are not:
(To make changes to css visible, reload the screen: menu ConfigurationReload screen)

Darker background under DarkerLabels group labels

In this case, we set only two parameters for the group named DarkerLabels:

• background-color
• border-radius

Below you can see the effect – a darker background and rounded corners under the labels:
(To make changes to css visible, reload the screen: menu ConfigurationReload screen)

Changing the color (backlighting) of the JOG buttons

As you can see above, we only modify the background color, however we do it conditionally. The hover keyword is responsible
for that the style will be applied only when a mouse hover over the widget. This creates the effect of "backlighting" the button.

[group="DarkerLabels"] {

 background-color: #10000000;

 border-radius: 5px;

}

[group="JogButtons"]:hover {

 background-color: yellow;

}

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
70

Below you can see the effect:
(To make changes to css visible, reload the screen: menu ConfigurationReload screen)

Changing the color (backlighting) of the FRO and SRO reset buttons

The same as for JOG buttons – we conditionally modify the background color (background-color). The hover keyword is
responsible for that the style will be applied only when a mouse hover over the widget. This creates the effect of "backlighting"
the button.

Below you can see the effect:
(To make changes to css visible, reload the screen: menu ConfigurationReload screen)

[group="Set100PercentButtons"]:hover {

 background-color: #0f0;

}

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
71

All contents of the "widgets.css" file

Above is the entire "widgets.css" file. As you can see, a dozen or so lines are enough to make the interface design more visually
attractive, and often more convenient to use and more readable for an operator.

[group="AxesNameLabels"] {

 background-color: #e80;

 border-radius: 3px;

 margin: 2px;

 color: #444;

}

[id="lbAxisXName"][axisXReferenced="true"] {

 background-color: #a0000000;

 color: #0f0;

}

[id="lbAxisYName"][axisYReferenced="true"] {

 background-color: #a0000000;

 color: #0c0;

}

[id="lbAxisZName"][axisZReferenced="true"] {

 background-color: #a0000000;

 color: #0c0;

}

[group="DarkerLabels"] {

 background-color: #10000000;

 border-radius: 5px;

}

[group="JogButtons"]:hover {

 background-color: yellow;

}

ww.cs-lab.eu

 simCNC motion control software – User Interface Editor Guide

Pa
ge
72

The final result and summary

This is how the finished project looks like. As you could see by reading this chapter, making the interface "from scratch" requires
a bit of work, but with this feature, simCNC software can be adapted relatively quickly to convenient operation of many types of
machines and their accessories.

The project described in this chapter is included in the standard simCNC installation (3.410 version and later).

If you have made your own project that you would like to share with other users, please let us know at office@cslab.eu.

The CS-Lab Team gives you best regards, wishes you fruitful work and great results 

mailto:office@cslab.eu

	1. General
	1.1. Recommendations and system requirements

	2. General conditions of working with the GUI editor
	2.1. The editor window
	2.2. Shortcut keys
	2.3. Stages of designing a new interface (workflow)
	2.3.1. Concept sketch
	2.3.2. Setting up the basic widget groups
	2.3.3. Setting up and arranging the main widget groups
	2.3.4. Assigning functions to widgets
	2.3.5. Styling with style sheets (CSS)
	Shortened notation of the widget "id" when entering "css" in the editor window.

	3. Widgets
	3.1. Push Button and Tool Button
	3.2. Progress Bar
	3.3. Line Edit
	3.4. Dial
	3.5. Checkbox
	3.6. Label
	3.7. Open File Button
	3.8. Tool Button with LED
	3.9. Tool Button with Progress Bar
	3.10. Horizontal Slider and Vertical Slider
	3.11. Digital IO indicator
	3.12. Analog IO indicator
	3.13. Current G-Codes
	3.14. MDI Line
	3.15. Python Console
	3.16. GCode List
	3.17. Path View
	3.18. Offset Table
	3.19. Group Box
	3.20. Frame
	3.21. Tab Box
	3.22. Scroll Area
	3.23. Horizontal Layout
	3.24. Vertical Layout
	3.25. Grid Layout
	3.26. Form Layout
	3.27. Splitter

	4. Auto-Layout System
	4.1. Container types
	4.1.1. Horizontal Layout
	4.1.2. Vertical Layout
	4.1.3. Grid Layout
	4.1.4. Form Layout
	4.1.5. Splitter

	4.2. Containers binding – hierarchical structure
	4.3. Main Window Layout
	4.4. Widgets containing containers
	4.5. Space division in containers
	4.5.1. Elements scaling policy settings (size policy)
	4.5.2. The ratio of elements size in a container (stretch)

	5. Connection of the graphical interface with simCNC software
	5.1. Widget input signals
	5.2. Widget output signals

	6. Connecting the graphic interface with Python scripts
	6.1. Activating a script with a screen button
	6.2. Referencing to interface elements with Python script
	6.2.1. Widget class methods
	6.2.2. Widget styling change

	Appendix – Step by step interface project
	Concept and sketch
	Creating a new interface project and editing start
	Basic widget groups
	"Start", "Pause", "Stop" and "Rewind" group of buttons
	"Open", "Close" and "Edit" group of buttons
	File name and processing time group
	Axis position indicator group
	„Machine coords” and „Ignore Soft Limit” check box group
	„Ref All”, „Probe”, „Park” and „Go To XY” group of buttons
	Widget with „Tool Info” and „Offsets” tabs
	„JOG” group
	„Feedrate” group
	„Spindle & Cooling” group

	Main groups and layout
	The left column
	The central column
	The right column
	The main container layout

	Assigning functions/actions
	Python macros for widgets with „Run script” action
	Macro for btnClose button - file„btnClose.py”
	Macro for btnAxisXZero button - file„btnAxisXZero.py”
	Macro for btnAxisYZero button - file„btnAxisYZero.py”
	Macro for btnAxisZZero button - file„btnAxisZZero.py”
	Macro for btnPark button - file„btnPark.py”
	Macro for btnGoToXY button - file„btnGoToXY.py”
	Macro for btnJogStep button - file„btnJogStep.py”
	Macro for btnFro5 button - file„btnFro5.py”
	Macro for btnFro50 button - file„btnFro50.py”
	Macro for btnFro100 button - file„btnFro100.py”
	Macro for btnFro200 button - file„btnFro200.py”
	Assigning macros to widgets

	Additions and minor corrections
	Stylization
	Final cosmetic using css style sheets
	Properties passed by simCNC
	Assumptions of the example
	Grouping
	Colors changing in the 3D preview
	Creating a new style sheet file
	Changing colors of axis labels and visualization of reference state
	Darker background under DarkerLabels group labels
	Changing the color (backlighting) of the JOG buttons
	Changing the color (backlighting) of the FRO and SRO reset buttons
	All contents of the "widgets.css" file

	The final result and summary

